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It is shown that the exponential growth rate of the fast kinematic dynamo instability 
can be related to the Lagrangian stretching properties of the underlying chaotic flow. 
In particular, a formula is obtained relating the growth rate to the finite time Lyapunov 
numbers of the flow and the cancellation exponent K. (The latter quantity characterizes 
the extremely singular nature of the magnetic field with respect to fine-scale spatial 
oscillation in orientation.) The growth rate formula is illustrated and tested on two 
examples : an analytically soluble model, and a numerically solved spatially smooth 
temporally periodic flow. 

1. Introduction 
This paper considers the fast kinematic dynamo problem. The limit of the instability 

growth rate as the electrical resistivity approaches zero is shown to be given by a simple 
general formula involving the finite-time Lyapunov numbers of the underlying chaotic 
flow. 

The kinematic magnetic dynamo problem can be stated as follows : Will a small seed 
magnetic field in an unmagnetized electrically conducting fluid be amplified 
exponentially in time by the flow? Combining Ampere’s law, Faraday’s law, and 
Ohm’s law for the flowing incompressible fluid, this linear instability problem leads to 
the following equation for the magnetic field B:  

aB 1 -+v .VB = B.Vv+-V2B, 
at R m  

where R, is the magnetic Reynolds number (i.e. the normalized electrical conductivity 
of the fluid), and the velocity v is presumed given and incompressible, V .  tr = 0. The 
dynamo is said to be ‘fast’ if exponential growth persists in the limit of infinitely large 
R, (Zel’dovich & Ruzmaikin 1980). That is, y* > 0, where 

and y(R,) is the growth rate of the fastest growing mode at magnetic Reynolds number 
R,. Fast dynamos are thought to be relevant to explaining the presence of magnetic 
fields in astrophysical objects, since these objects typically have very large magnetic 
Reynolds number (e.g. R, > 10’ on the surface of the Sun). 

t With an Appendix by B. J. Bayly and A. Rado. 
2 And Department of Electrical Engineering. 
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It has been argued that fast dynamo action in a flow is connected with the nonlinear 
dynamics of the Lagrangian trajectory equation for points in the fluid, 

- dx = v(x, t). 
dt (3) 

In particular, fast dynamo action of a smooth flow is expected (Arnol’d et al. 1981 ; 
Bayly 1986; Bayly & Childress 1988; Finn & Ott 1988; Finn et al. 1991; Galloway & 
Frisch 1986; Vishik 1989) only if this equation has chaotic solutions in the sense that, 
in a positive volume of space, there is exponential divergence of infinitesimally 
displaced initial conditions. We call this situation Lagrangian chaos. Finn & Ott (1 990) 
conjectured that the limiting growth rate y* given by (2) is the same as the exponential 
rate of flux growth through typical surfaces calculated from the ‘ideal’ (i.e. infinite 
conductivity) version of (l), 

i3B 
-+v.VB at = B - V V ,  (4) 

which results from the omission of the term V2B/R,. This is a considerable 
simplification because (4) can be written as an ordinary differential equation, 

- = B- VV, dB 
dt 

following the Lagrangian trajectory x(t) of a fluid particle. Alternatively (5a)  can be 
written as 

- = A- B, dB 
dt 

where the 3 x 3 matrix A is given by = (Vu)’, where + denotes the transpose. 
Consideration of two orbits of (3) initially displaced by an infinitesimal &x(O) leads to 
an equation for the time evolution of the displacement ax, 

!E = sx.vv = A.SX’ dt 

which is the same as ( 5 )  with B replaced by Sx. Thus, in the infinite-conductivity case, 
B and Sx evolve in the same way. Note that the replacement of (1) by (4) is not trivial, 
since, as R, becomes large, B varies more and more rapidly in space, and V2B/R, is 
thus not necessarily small; this is why the prescription of Finn & Ott (1990) remains 
a conjecture. In this paper we attempt to calculate the limiting growth rate y* purely 
from general stretching properties of the Lagrangian chaotic flow u(x, t). Thus, as in 
the conjecture of Finn & Ott (1990), the result is in terms of quantities calculable solely 
from the dissipationless equation for B, ( 5 )  (equivalently, (6)). We obtain a formula 
((23) of $3) giving y* in terms of the finite-time Lyapunov numbers of the flow and the 
cancellation exponent K. (The latter quantity characterizes the extreme tendency of 
high-R, dynamo magnetic fields to oscillate in sign on a very fine spatial scale @u & 
Ott 1993; Ott et al. 1992).) Related results are those of Aurell & Gilbert (1992), who 
calculate y* in terms of unstable periodic orbits in the flow, and of Finn & Ott (1990), 
who argue that the logarithm of the average rate of stretching (where the average is 
done appropriately) is an upper bound for y*. In fact, our result in the present paper 
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reduces to the upper bound of Finn & Ott (1990) in the absence of cancellation effects 
(K  = 0), and is smaller than the upper bound when cancellation is present (K  > 0). 

The formula we obtain for y* is interesting in that it provides a connection to the 
ergodic stretching properties of the flow. In addition, however, the numerical results of 
$ 5  also show that it offers a potential computational advantage. In particular, the 
growth rate formula appears to be much easier to compute numerically and to 
converge quicker than a straightforward computation of the flux growth through a 
surface (Finn & Ott 1990). 

In this paper we take the underlying unperturbed flow v(x, t )  to be such as to yield 
Lagrangian chaos, meaning that (6) has an exponentially growing solution for typical 
fluid trajectories x(t)  in a volume of space. The actual time dependence of u can be 
steady ( v  = u(x)), periodic (u(x, t )  = u(x, t + T )  where T is the period), or be more 
complicated. In the last case, the fluid equations yielding the unperturbed u(x, t )  may 
be chaotic in a second sense, namely that the time dependence of u(x, t )  atfixed x may 
be chaotic. We refer to this as temporal chaos of the unperturbed solution, and we 
emphasize its distinction from Lagrangian chaos. 

For steady and time-periodic flows, the Lagrangian orbits can be either chaotic or 
non-chaotic, and when an orbit x( t )  is non-chaotic, its time dependence is quasi- 
periodic (corresponding to a KAM torus). In cases where there are chaotic regions 
amidst KAM tori, the considerations of our paper should be understood to apply to 
a single chaotic ergodic region of the flow. In the examples we treat in $94 and 5, we 
use particular time-periodic flows v. For these flows there is Lagrangian chaos over 
essentially the whole space. We believe, however, that the results obtained are 
indicative of what happens in general, including steady flows that have ergodic regions 
of Lagrangian chaos, as well as temporally chaotic flows. 

The organization of this paper is as follows. Section 2 reviews the concept of the 
cancellation exponent (Du & Ott 1993; Ott et al. 1992) which plays an essential role 
in the subsequent analysis. Section 3 develops the growth rate formula for the fast 
dynamo problem. The growth rate formula is not obtained rigorously, and so it is 
useful to test it in examples. This is done in $04 and 5.  Section 4 treats an analytically 
soluble case of the ' stretch-fold-slide ' type (a variant of the ' stretch-fold-shear ' 
dynamo introduced by Bayly & Childress 1988 and Soward 1987). The example of $ 5  
is a numerically solved spatially smooth temporally periodic flow (Finn & Ott 1988 ; Du 
& Ott 1993). For another numerical confirmation see the addendum by Bayly & 
Rado that appears as Appendix B. 

2. Cancellation exponent 

an eigenvalue problem, 
Consider, for definiteness, the case of a steady flow, u = u(x). In this case (1) yields 

(7) 

for a magnetic field with space-time variation B(x, t )  = e8jtbj(x), where si is the 
(complex) eigenvalue corresponding to the jth eigenfunction b3(x). For a typical initial 
condition, B(x, 0), all eigenfunctions are excited. However, after a sufficient time, 
B(x, t )  will be dominated by the eigenfunction with the largest growth rate (i.e. largest 
Re (s,)). Theory and numerical results show that the corresponding eigenfunction 
b,(x) varies on fine scale for large Rm. In fact, balancing the last term in (1) with the 

1 
si b,(x) + u - Vbj(X) = b,(x) - vu +- V%,(x), 

Rm 
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FIGURE 1 .  B, versus x for the model of (Ott et al. 1992; Du & Ott 1993) with R, = 10’. 

other terms in the equation, one finds that the typical lengthscale for variation 
of the magnetic field is (Moffatt & Proctor 1985) 

€* = L , / R ~ ,  (8) 
where Lo is the lengthscale of the unperturbed flow u. Thus, as R, is increased, bj(x) 
varies on finer and finer scale. Figure 1 (from Du & Ott 1993) shows the magnetic field 
in the y-direction as a function of the linear coordinate x for R,  = lo7 after the field 
has settled into its large-time asymptotic form. (The system resulting in figure 1 is a 
simple baker’s map dynamo model on the interval 0 < x < 1 which we shall not 
describe here.) The point is that the magnetic field in figure 1 exhibits extremely rapid 
oscillations from positive to negative values, and this situation becomes more and more 
extreme as R, is increased. 

In order to characterize this type of singular behaviour, a ‘cancellation exponent’ K 

was introduced in Du & Ott (1993) (see also Ott et al. 1992). As an example, consider 
the situation in figure 1, and divide the x-axis into equal-length intervals of size e. We 
then introduce the quantity, 

where ji, ..., dx denotes the integral over the ith interval of length c,  and t is large 
enough that the x-dependence of Bu has reached its final form in which there are 
variations on the scale given by (8). Figure 2 shows a plot of In x(e) versus In (I/€). The 
data are well fit by a straight line for e > E* - l/&. (The deviation from the straight 
line at large ln(l/e) is numerically observed to occur at smaller F if R,  is increased). 
Thus in the scaling range, 1 + e 2 e*, we have 

X(€) - 
where the exponent K is the slope of the straight line in figure 2. We call K the 
cancellation exponent. It is a quantitative characterization of the very rapid oscillations 
in the sign of By.  For example, if By were always positive, then the numerator and 
denominator of (9) would be the same, so that X ( F )  = 1, and K = 0 (no cancellation). 
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FIGURE 2. lnx versus In(l/c) for the same model (Ott et ai. 1992; Du & Ott 1993) as was used 
for figure 1 with R, = lolo, K = 0.43. 

Increase of ~ ( s )  with decreasing E (which is necessary to obtain K > 0) occurs only 
because cancellations between positive and negative BV in the sum X i  1 j, 3, dx( are 
reduced for smaller s. 

Note from figure 2 that for e 5 E * ,  the quantity ~ ( 6 )  becomes constant. This is 
because By is locally approximately constant over distances less than E*. Hence, for 
large t and E 5 E * ,  we have 

i 

Thus setting s = c*, we conclude that 

The above considerations, illustrated for the variation of By along a line, readily 
generalize to surface and volume integrals @u & Ott 1993). The case of interest here 
is a volume, for which (9) is replaced by 

x(e )=  C I J B ( X , O ~ ~ X ( / ~  i i  J v ~ ~ x , t ) d 3 x l ,  (1 1) 

where now i denotes a cube from an e-grid which covers the active dynamo volume Y 
(we assume that the denominator in (1 1) is not zero), and (10) is replaced by 

So far we have been considering the case of large but finite magnetic Reynolds 
number. In fact, the cancellation exponent can be computed directly from the infinite- 
conductivity equation, (4). This represents an important simplification because now 
one only need integrate ordinary differential equations, ( 5 ) .  In this case the solution of 
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(4) for a smooth initial condition continues to develop variation on finer and finer scale 
as time increases, and this process continues forever. On inserting a large- but finite- 
time solution of (4) for B in 

a result similar to figure 2 still applies, and the resulting slope K in the scaling range is 
the same (Du & Ott 1993) as would be obtained for the same flow with a large finite R, 
and t large enough that the final spatial form determined by (8) has been attained. The 
difference is that now the small+ cut off of the scaling range depends on how large t 
is, and it decreases exponentially to zero with increasing t .  The equality of the two 
results for K is shown in Du & Ott (1993) and is reasonable on the basis that the effect 
of resistivity is diffusive (the term R;'V2B in (1)) and thus manifests itself as a 
smoothing of the magnetic field on the scale E* of (8). Such smoothing makes only a 
small change in I s, B(x, t )  d3xI if the dimension of the cube c is large compared to e*. 
Hence, the scalings of X ( E )  and of 2(~) are expected to be the same for E > e*. (See Du 
& Ott 1993 for numerical tests and further discussion.) (In 13) note that we have 
placed a tilde over x to signify that the calculation is done using the magnetic field 
obtained from the infinite conductivity equation, as opposed to (1 1) where a large finite 
R, is used.) 

3. Growth rate formula 
Assume that enough time has passed so that the magnetic field in a dynamo with 

large but finite magnetic Reynolds number (R, % 1) has evolved to the time- 
asymptotic state where field variations occur on the lengthscale L,/RL (equation (8)) .  
Now imagine that we divide the dynamo region into a grid of cubes of unit size 6, one 
of which (cubej) is shown in figure 3(a). Let x = xoi denote the point at the centre of 
the cube, and let the cube be small enough that the action of the flow over a time 
interval t is to deform the cube in accord with (6), the linear approximation for small 
deviations from an orbit. Let M(xoi ,  t ,T),  obtained from solving (6) ,  be the matrix 
relating 6x at time T and location x = xoj to 6x at time 7+ t and location x = xi, 

(14) 
As a result of the flow, the cube is deformed into a long thin flat parallelepiped (figure 
3 (b) of dimensions (length, width, thickness) of the order of Lj1 6 x Li2 6 x Li3 6, where 
Ljl,,,, are the magnitudes of the three eigenvalues of M(x, ,  t ,T),  and we choose the 
subscripts 1, 2 and 3 so that 

Because the flow is incompressible, L,, Lj2.L,.= 1. Since the flow is taken to be chaotic, 
we assume L,, > 1, and, by incompressibility, we must then also have Lj3 < 1. It 
suffices to think of the parallelepiped that J maps to as a rectangular slab (figure 3 c). 
To see that this is so, we note that we will only need order of magnitude estimates of 

IBI d V  over J and over the parallelepiped to which J maps. We also note that, for 
typical flows and typical points xoi, the angles between the eigenvectors of the matrix 
M(x,, t, T) are order one. Thus our required estimates can be obtained by replacing J 
by a parallelepiped J' whose centre is at xoi and whose edges are of length 6 and are 
parallel to the eigendirections of M(x,,,  t ,T ) .  Mapping J' forward by t ,  we obtain 
another long thin flat parallelepiped (overlapping that in figure 3 c). The point is that 

SX&) = A+,, t, 7)  - SX,. 

Ljl 2 Lj2 2 Li3. 
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4 

FIGURE 3. (a) Cube of edge length 8. (b) Deformation of cube in (a). (c) Rectangular slab 
idealization of (b). 

the angles between the edges of this parallelepiped will also be order one, and making 
the edges perpendicular will thus not significantly alter our estimates. We are interested 
in large t ,  so that Lj, % Lj3. On the other hand, we cannot let t be too large since we 
will also require that 

For a large fixed value of t and sufficiently large R,, we can choose a S such that these 
inequalities hold. The first inequality is necessary so that the linear approximation 
given by the matrix M(x,,,  t ,  7) is valid in cube j .  

Now imagine that we divide the slab in figure 3(c) into small cubes of edge length 
Lj3& The number of such small cubes in the slab will be of the order of 

Ljl 6 6 Lo, Li3 6 & L, /dm.  (15) 

(16) N -  - 41 = L73 

L,3L,3 33 ’ 

where the second equality follows from the incompressibility condition. 
To proceed, it is necessary, at this point, to make an additional assumption which 

restricts the type of chaotic flows that we consider. In particular, we shall assume here 
that the magnetic field has local sheet-like structure. By sheet-like structure we mean 
that the magnetic field is slowly varying on locally parallel surfaces (sheets), across 
which the variation is very rapid, and, for scales larger than L o / R i ,  the field effectively 
concentrates on a fractal set of these sheets (Du & Ott 1993). This is so for the 
important case of steady flows. More generally, as shown in Du & Ott (1993), for there 
to be sheet-like structure it is necessary that the flow be non-contracting in two 
directions, i.e. in addition to the condition Lil > 1, implied by the assumed chaos of the 
flow, we also require Lj, 2 1. To see why sheet-like structure is implied for the case of 
two expanding directions, Ljl,  > 1 > Li3, we note that under this condition, at a point 
x there is a two-dimensional unstable manifold (the sheet) through x. Taking a point 
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x' on the sheet through x and using (3) to evolve the orbits through x and x' backward 
to time zero, the two backward orbits approach each other exponentially. Thus, if the 
points x and x' are close, then the orbits leading to them from time zero were always 
close. Hence integration of (5 )  yields nearly the same B at the two points x and x'. On 
the other hand, if x' were chosen near x, but on a different sheet, then the backward 
orbits through x and x' would diverge exponentially. If, by time zero, the two orbits 
have separated by a distance of the order of Lo, then the values of B at x and x', 
obtained by integrating (5 ) ,  would be very different. Hence, for large time, B varies 
wildly across the sheets. (When there is contraction in two dimensions, Lj2 c 1, the 
field is smooth only in the one expanding direction, and is fractal in the two directions 
transverse to it (Du & Ott 1993); we then say that the field structure is rope-like.) In 
practice, given an unperturbed flow 0, it is not hard to numerically test whether the 
assumption of locally sheet-like magnetic field structure applies (see 9 5). The important 
point is that, in the case of locally sheet-like structure, the fields in all of the small cubes 
that we have divided the slab in figure 3(c) into are roughly the same; for example this 
is certainly so if the sheets are parallel to the plane determined by the largest area face 
of the slab in figure 3 (c). Indeed, stretching in the directions corresponding to L,, and 
L,, tends to align this plane with the sheets. 

If there were no resistive diffusion (the term V2B/Rm in (l)), the magnetic field 
following a point initially in the cube of figure 3(a) would increase in proportion to the 
net stretching of a field line element (i.e. by a factor of order LjJ, and the spatial scale 
for variation of the field would decrease by a factor of order Lj3. However, resistive 
diffusion prevents variations on scales smaller than L0/dm (equation (8)). Thus, in the 
presence of small diffusion, the contraction of the cube along the Lj3 direction does not 
create scale variations finer than L,/Rh. 

Denote by J the original cube (figure 3 4  and by S one of the small cubes of edge 
length Lj3 6; see figure 3 (c). If we magnify S by a factor L;I, then the resulting magnetic 
field variations in J will differ from those in S in that the fine-scale field variations in 
J are cut off at e* - Lo/&,, while those in the magnified-S cube are cut off at the larger 
(magnified) scale e** - L;'eE* - LG1LO/Rk. (The second inequality in (15) says that 
the scale E** is small compared to the edge length 6 of the magnified cube.) Hence by 
(12) we have 

n 

and 

Thus 

Now consider the area ABCD shown in figure 3(a). During the time t this area is 
carried to A'B'C'D' as shown in figure 3 (c). Since L,3 6 % Lo/&, the magnetic flux is 
effectively frozen in as the area convects so that the fluxes through ABCD and 
A'B'C'D' are approximately equal. Thus we have 
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Using (16) and the incompressibility condition, Li, Li2 Li3 = 1, this becomes 

The factor Lj, on the right-hand side of (18) results simply from the fact that, in the 
absence of electrical resistivity, B obeys the same equation as 6x (see ( 5 )  and (6)). Thus 

(19) 
and B grows by the factor roughly Li, (the magnitude of the largest eigenvalue of M). 
Combining (1 7) and (1 €9, we have 

Bhslab,attimet+T ‘,% M ( x O j ,  ‘9 ‘1. Blin J,attimeT, 

c ,. 

Summing over all cubes j yields 

where Vdenotes the entire ergodic dynamo region. The quantity summed overj on the 
left-hand side of (21) consists of two factors: one factor, LilL’f3, is determined by 
the orbit during the time interval t ;  the other factor, IB1d3x, is determined by the 
evolution prior to the time interval t .  By the assumed cgaotic nature of the orbits, the 
distant future and the distant past (distant in terms of many Lyapunov times) are 
effectively uncorrelated. Hence 

c ( L j l  L;3) 1 I B I  d3X <L1(x? t> L:(x, ‘1) c 1 Bd3x 
j J1 j Jj  

= (Ll(x, t )  L ~ ( x ,  O )  [ J l B ~  dsX] , (22) 

where L,(x, t )  are the magnitudes of the three eigenvalues ( i  = 1,2,3) of M ( x ,  t ,  7) and 
(...) indicates an average over x in the volume V. From (21) and (22) 

V time7 

We now assume that during the time interval t the magnetic field grows roughly as 
exp (y* t )  (cf. (2)). (This neglects other non-exponential time dependences of the 
magnetic field, such as superposed sinusoidal dependences (appropriate for steady or 
time-periodic flows) or a more complicated time dependence when u is temporally 
chaotic.) Equation (23) thus leads to the main result of this paper, 

1 
t*m t 

y* = lim-ln(L,L;), 

which relates an infinite time limit of an average of the finite-time Lyapunov numbers, 
L, and L,, and the cancelation exponent, K ,  to the dynamo growth rate, y*. Note that 
cancellation ( K  > 0) decreases y* from the upper bound conjectured in Finn & Ott 
(19901, 

1 
y* < lim-In (L,). 

t+m t 
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Under certain conditions (Yomdin 1987) the right-hand side of (25) may be identified 
with the topological entropy of the flow. 

In order to numerically utilize (24), one can proceed as follows. First sheet-like 
structure must be confirmed. A rough way of doing this is to calculate the Lyapunov 
exponents in the ergodic dynamo region ; if two of them are non-negative, then that is 
a good indication that the structure will be sheet-like. Another method is to solve (5 )  
numerically to make contour plots on a plane cutting the dynamo region of the 
component of B normal to the plane (cf. figure 8 of $ 5  and Du & Ott 1993). As time 
increases, one can see, in such plots, that the regions of large magnetic field tend either 
(Du & Ott 1993) to locally parallel curves (the intersections of the sheets with the plane) 
or many ever-decreasing-in-diameter blobs (the intersections of the ropes with the 
plane). (This type of computation is described further in 6 5 . )  If sheet-like structure is 
confirmed, the next step is to calculate the cancellation exponent. Since the structure 
is sheet-like, this can be done using a line segment cutting the sheets (rather than a 
volume, as in (1 1)). After choosing a line segment in the dynamo region, a component 
of B normal to the line is computed (again using (5 ) )  at a large number of evenly spaced 
points along the line at a time sufficiently large that B varies on a very fine scale. The 
cancellation exponent is then computed as the slope of a plot of In Z(E)  (see (1 3)) versus 
In (l/e) in the scaling range. Next we compute ( L ,  L;) and plot In ( L ,  L;) versus t .  The 
estimated value of the growth rate y* is then the slope of this plot. To compute 
(L ,  L;), we proceed as follows. We first sprinkle many initial conditions uniformly in 
the ergodic dynamo region V. Then for each initial condition x, we compute L, by 
choosing an arbitrary initial Sx, and integrating dSx/dt = Sx forward, along the 
trajectory from x, for time t. Since L, is the magnitude of the largest eigenvalue of 
M ( x ,  t, T) ,  we have that, for a typical choice of Sx, 

Next, we obtain L, at x by choosing an arbitrary ‘final’ ax, at x and integrating 
dSx/dt = &,!,ax backward to x(0) to obtain Sx(0). Since 1/L, is the magnitude of the 
largest eigenvalue of &’ we have, 

We then form the quantity L, L; and average its value over all the initial conditions. 
Care must be taken in doing these computations, because the requirement of having 
good statistics for the average typically becomes more difficult to satisfy at later times 
(thus requiring the use of more initial conditions). In the example of $4, we use both 
(24), and a direct computation of the diffusionless exponential flux growth rate through 
a line segment to estimate y*. The two computations agree to within the accuracy 
obtained, but the computation based on (24) is much less demanding and also 
converges more rapidly. 

Remark. It is well-known that fast dynamo growth is inherently a three-dimensional 
process (Zel’dovich’s antidynamo theorem). For example, in a purely two-dimensional 
situation where B and u depend only on x and y and lie in the (x, y)-plane, no dynamo 
growth is possible. In the context of our growth rate formula, (24), this is reflected by 
the fact that cancellation is essentially perfect in two dimensions; K = co (see the 
remark following (46b)), which, from (24), yields no growth. As shown in figure 4, 
perfect cancellation in this case is due to the topological constraint that magnetic field 
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(a) (b) 

FIGURE 4. Flux tube ab in (a) evolves under a chaotic flow to (b). 

lines do not cross as the situation evolves, and this applies whether or not the two- 
dimensional flow is Lagrangian chaotic. Figure 4 shows a single flux tube with its ends 
anchored at the points a and b. At t = 0 (figure 4a)  the flux tube crosses the line cd, 
creating one unit of upward flux. As time goes on the flux tube is stretched and 
contorted. At some later time (figure 4b) the net upward flux through cd can only be 
either + 1, - 1 or 0 (in units of the flux at t = 0) because upward and downward 
crossings of cd by the flux tube precisely alternate. 

Remark. Since L, < 1/L, for sheet-like magnetic field structure, we see that (24) can 
yield exponential growth only if IC < 1 .  See Appendix A for a discussion of the case 
K >  1. 

4. Stretch-fold-slide dynamo 
4.1. The model 

Bayly & Childress (1988) consider time-periodic flows that are independent of the axial 
coordinate z and that, in each time period, consist of two phases. In the first phase 
u, = 0, so that fluid particle displacements are purely in the x- and y-directions. If at the 
beginning of the nth period a fluid element has coordinates x, and y,, its x and y- 
coordinates after the first phase of motion are displaced according to a two- 
dimensional map, 

During the second phase u, =!= 0, but 0% = u, = 0, so that the fluid particle displacement 
d(x,y) is purely in the z-direction, 

(X,+l ,  Y,+J = K(x,Y Yn) ,  4 ( x n , . Y , ) ) .  (28) 

z,+1 = z ,  + d(X,,Y,). 

( 4 X Y  t> = 4x9 t + TI), 

(29) 
In a case, such as that above, where u(x, t )  is time periodic with period T, 

the solution of the trajectory equation, dxldt = u(x, t),  yields a map giving x at time 
t = (n+ 1) Tin terms of x at time t = nT, 

x,+1 = M(x, ) ,  
where x, = (xn, y,, 2%). Let B,(x) denote the magnetic field at time t = nT. Since B 
evolves in the same way as 6x in the infinite-conductivity case ((5a) and (6)  are the 
same), the evolution of B, is governed by the Jacobian matrix DM(x) of the map. That 
is 

B,+,(x) = D M ( M - ' ( x ) )  - B,(M-l (x) ) .  (30) 
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0 1 x  0 x o  0 1 x  

FIGURE 5. Action of the map (31) on the unit square, (0,O) < ( x , y )  < (1,l). (a)+(b)  
incompressible stretch; (b) + (c) + (d ) :  fold. 

We now specialize to a particular form for the two-dimensional map (28) (Finn & 

(31 4 

Ott 1988), 
for yn c a, 

for y ,  <a, 
X n + 1 =  { L ; - x n ) + a  for y , 2 a ,  

Y n + l =  {:;fyn)/p for yn a, (31 b) 

where a+p = 1. This map is an incompressible version of the 'generalized baker's 
map' (Farmer, Ott & Yorke 1983). Its action on the unit square is illustrated in figure 
5.  In addition, to further facilitate the analysis, we take u, during the shear phase to be 
v, = 0 for x < a and u, = vz0 for x > a, where uJt)  is spatially constant in x > a. Thus, 
d appearing in (29) is likewise zero in x c a and a constant, call it A,, in x > a. That 
is, we slide the region x > a forward by the distance A,. Let the magnetic field at the 
end of the nth step be independent of y and of the form 

B = Re {B,(x) exp (ikz) yo} ,  (32) 
where the exponential z-dependence corresponds to the assumed homogeneity of the 
flow in z. Equation (30) then yields 

a-'B,(x/a) for x < a, 
jTIB,[( 1 -.)/A eU for x > a, (33 a) 

where 6' = kA,,+n. Equation (33a) can be represented symbolically by a linear 
operator 2, 

Bn+,(x> = 2[Bn(x) l*  (33 b) 
In the limit of R, +. 00 the magnetic field concentrates on a fractal set (Finn & Ott 

1988; Du & Ott 1993). Thus we assume that the resulting time-asymptotic field is a 
generalized function which is an eigenfunction of (33). Formally, this is expressed as 

9 [ 3 ( x ) ]  = hB'(x), (34) 
where h = Ihle'$ 

is the complex eigenvalue corresponding to the generalized eigenfunction &x). The fast 
dynamo growth rate is then 
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where T is the temporal period of the stretch-fold-slide flow, and instability 
corresponds to IAJ > 1. The angle 4 specifies the fundamental frequency of oscillation, 
$ /T ,  for the eigenfunction. 

4.2. Check of the growth rate formula 
The advantage of the model (33 a) is that analytical calculations are relatively easy. To 
calculate A, we consider the flux integral @n+l = s: B,+l(x) dx. Using (33 a) for B,+l(x) 
we immediately obtain 

(36) 
Hence, identifying h with the flux growth rate (Finn & Ott 1990), we have 

A = l+eie, (37) 

= (1 + eis) @,. 

which yields instability for 11 +ei81 > 1. (Note that q5 = arg (A)  is a function of 8 ;  
tan q3 = sin O / (  1 + cos O).) 

In what follows we attempt to show that (35) and (37) for the growth rate satisfy the 
general formula (24). To this end we normalize the eigenfunction so that j: &x) dx = 
1, and we write the magnetic field at z = 0 and at the time n (n 4 1) as 

B(x, n) = Re [B,(x)] = Re [AnBo &(x)], (38) 
where B,, = IB,( exp (it) is a complex constant, and the real part used to obtain the 
actual field B(x, n)  results from our use of the complex representation, (32). Substituting 
in (9), we define 

A?(€, El = CI IRe(e'wq11, (39) 
j 

where 1, denotes the jth interval of length E ,  ~ ( 1 ~ )  = j I .  @x) dx, and i i e ,  0 in (39) isj(E) 
of (9) multiplied by the factor IRe{ei~~ol~(x)dx}l.  hhaking use of B(x) = A-lS?[B(x)] 
and the specific form of 9 given by (334, we have from (39) 

(40) X ( G  Q = 1Al-l Mela, t- $1 + X ( S / P ,  t- 4 + 011. 
Expanding X ( E ,  iJ in a Fourier series in [, we have 

which when substituted in (40) yields 

Ihl x, (E)  ei"# = ~,(e/a)  + x , ( E / / ~ )  eime. 

To solve (42), we assume solutions of the form x , ( E )  = Km e?m (where K ,  and K, can 
both be complex). Substituting this form in (42), we obtain an equation for the 
exponent K,, 

This equation, in general (i.e. barring special choices for O), has an infinite number of 
complex roots. Let 

K, = K:) + irc:), 
where ~ g )  and K: are real, Then 

(43) IAl eimq = EKm + p"m e'm@. 

-$') 
~ - ~ m  = E m exp [iK$ In (1 /€)I. 

Thus such a root corresponds to an increase of x,(E) with decreasing E as E&) 

modulating a sinusoidal oscillation in the variable In (1 /e) with a period ~ T C / K $ ) .  As 
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e+O,  the sum in (41) will be dominated by the root of (43) with the largest value of 
K;). Taking magnitudes of both sides of (43) and noting that la + bl < la1 + lbl, we have 

lhl < a K Z ' + P " % ) .  (44) 
Since a and ,8 are both less than one, (44) implies an upper bound on KK) 

(45) 

Ihl = a"+p". (46 a) 

( r )  < - 
K, \ K ,  

where i? is the unique real positive root of 

We now note that this upper bound is actually attained: setting m = 0, we see that (43) 
reduces to (46a). Thus i? is in fact the cancellation exponent K ,  

Ih( = a K + P " .  (46 b) 
(Note that in the purely two-dimensional case kd, = 0, implying by (37) that h = 0, 
which from (46b) yields K = 00.) 

We now show that (46b) is precisely the result obtained from (24). To do this we note 
that, for the map (31) for any initial condition (xo,yo) ,  at time nT, 

L, = 1 /L,  = (1 /uy (1 (47) 
where r is the number of times the orbit of length n starting from (xo ,yo)  visits the 
region x < a. (Note that L, = 1 (from (29), 6zn+, = 6z,, for 6xn = 6yn = O ) . )  The 
second equality in (47) results since, by figure 5, there is a stretching by the factor ( l / a )  
each of the r times the orbit visits x < a, and a stretching by the factor (1//3) each of 
the ( n - r )  times it visits x > a. We now note the following result from Farmer et al. 
(1983). The area of initial conditions yielding orbits of length n that visit x < a for r 
times is 

where Cn,r = n ! / [ ( n - r ) !  r ! ]  is the binomial coefficient. (Note that 
A y , n  = C n , r ~ ~ r - ~ ,  

n 

r=o 
C Ar,n  = (a+/3)" = 1, 

as it should.) Thus 
n 

( L ,  L;) = (Li-") = I: Ar, n(a-r/3(n-r))1-K 
r=O 

Now, substituting (48) in (24), and identifying t with nT and Ihl with exp(y, T) ,  we 
immediately obtain (46b). Hence, we have verified (24) for this example. 

4.3. Numerical computations 
In the next section we will provide numerical tests for (24). These additional tests will 
be via numerical experiments, and these experiments are necessarily subject to the usual 
limitations imposed by finite computer resources. Thus it is useful to benchmark the 
accuracy and performance of the numerical methods to be used in the next section by 
applying them to an analytically soluble example. Figure 6 shows such calculations 
using the stretch-fold-slide model of ( 3 3 4  with 0 = 1.4, a = 0.45, ,8 = 0.55, and an 
initial condition of B,,,(x) = 1. 
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FIGURE 6. (a) In 1 J: B,(x) dxl versus n. (b)  In a(€) versus In (1/e) calculated at n = 18. (c) In (Li-") 
versus n for N, = lo5. Superposed straight lines in (a) and (b) show the fits used to determine the 
numerical estimates quoted in the text. For all three plots, a = 0.45, /3 = 0.55, 0 = 1.4 and the initial 
field in the z = 0 plane is one. 

Figure 6(u) shows a plot of In 1 j: B,(x, n) dx( versus n. Here B&, n) is calculated at 
N ,  = los evenly spaced points (x i }  in the interval [0,1], and the integral is approximated 
as N i l  zz B,(xi, n). Oscillations from positive values (indicated by + in the figure) 
to negative values (indicated by - in the figure) occur with a period in n of 27c/$. The 
plot is done for two different grids (the dashed line and the dash dot line), i.e. one grid 
is shifted from the other grid by fe where E = l /Np = lop8. For n < 24 the two plots 
are the same; after this time they diverge. This occurs because the magnetic field tends 
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to oscillate more wildly and to concentrate on a fractal as time increases; hence the 
number of points needed to accurately approximate the integral becomes larger as time 
increases. Past n z 24 we regard the results as not reliable. From the straight-line fit in 
the figure we obtain a flux growth rate of 0.42, as compared to the theoretical value of 
0.426 . . . from (37). 

Figure 6(b) shows a plot of ln2(e) versus ln(l/e) using N p  = lo8 points and the 
magnetic field at iterate number n = 18. The interval used is again [0,1]. We see that 
at small E (i.e. In(l/c) 2 10) the numerical plot begins to deviate from the fitted straight 
line as a result of E approaching the smallest scale generated at n = 18. At large E (i.e. 
In(l/c) 5 3) there appear to be fluctuations which may be either statistical or due to 
K, roots of (43) with non-zero imaginary parts. In the intermediate scaling range, the 
data are very well fitted by a straight line whose slope yields K M 0.382 as compared to 
0.385 from (46b). 

Figure 6(c) shows a numerical plot of ln(L:-") versus n, where the average 
is performed over N p  = lo5 initial points evenly spaced in the interval [0,1]. Over the 
time interval shown, the data are almost perfectly fitted by a straight line whose slope 
yields a growth rate of y* = 0.424, which agrees well with the theoretical value of 
0.426 . . . . 

Note that the difference between using (L,L;) and the individually averaged 
Lyapunov numbers in the combination (L,) ( L3)" becomes greater the more 
inhomogeneous the stretching is, and the results for the two are the same if the 
stretching is uniform (e.g. a = /3 = in the example of this section). For example, in the 
case of figure 6 (a = 0.45, /3 = 0.55) the difference between our growth rate given by 
(24) and that calculated using (LJl-" in place of (Li-") is only 1 % ; on the other hand, 
for M = 0.3 and p = 0.7 this difference increases to about 15 YO, a difference that would 
be detected by our numerical calculations. 

5.  A temporally periodic flow 

Consider an incompressible flow 
5.1. The modelflow 

4x7 0 = xo V,(Y ,  z)f(t) +YO UJZ, x)f(t - T/3) + zo vz(x, v) f ( t -  2T/3), (49) 
wheref(t) is periodic function with period T andf(t) = 0 for T/3 +nT < t < (n + 1) T 
(see figure 7) so that the flows in the x-, y- and z;directions are turned on separately. 
Also we assume thatf(t) is normalized so that so f(t)dt = ~,"'f(t>dt = 1. Integrating 
dx/dt = u(x, t) through one period T, one obtains a volume-preserving map relating x 
at t = nT to x at t = (n+  1) T 

which is not dependent on the specific form off(t) (thus the fast dynamo problem will 
also be independent of the specific form off(t); see (5b)). Choosing u,, vy and vz in the 
form 

v, = A sinz+Dcosy, 
vy = Bsinx+Ecosz, 
v, = Csiny+Pcosx, 
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FIGURE 7. Schematic plot off(t). 

FIGURE 8. Locations of points on a 100 x 100 grid whose magnetic field contributes 90% of @' at (a) 
n = 4, (b) n = 5 ,  (c )  n = 6 ,  and (d )  n = 7. Points with positive and negative B, are plotted as positive 
and minus signs, respectively. 

0, ?." 9=7 in 
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the flow, (49), yields the map 

Y. Du and E. Ott 

(51) I xntl = x, + A  sinz, + D cos y,, 
ynfl = yn + B sin x, + Ecos z,, 
znfl = z, + Csiny,,, + Fcos x , , ~ .  

(Note when A = E, B = F and C = D, the map (51) becomes the so-called ABC map 
of Du & Ott (1993), Feingold, Piro & Kadanoff (1988) and Finn & Ott (1988).) 

In the following subsection we present numerical results for this flow. For all the 
reported numerical results, the initial magnetic field ($5.2) is the z-direction with a 
uniform strength of one, and we choose A = B = C = 0, D = 2.3, E = 2.5 and F = 2.7. 
For these chosen parameters, the three Lyapunov numbers are (0.74,0.25, -0.99) and 
the chaotic region extends throughout almost all space, i.e. there are no sizeable KAM 
tori. 

5.2. Fast dynamo problem 
Let B,(x) denote the magnetic field at time t = nT. The evolution of B,(x) in the 
infinite-conductivity case is governed by (30) with D M ( x )  the Jacobian matrix of the 
map transformation (51). Thus, to calculate B, at any given point x, we first iterate the 
map (51) backward n steps to find the orbit leading to x at time n from an initial 
condition at time zero. We then iterate (30) forward along the above-determined orbit 
using the specified initial condition B,,,. 

Refer to figure 8(a-d) (similar figures are given in Du & Ott 1993). To explain 
the meaning of these figures we describe how they are produced. We first calculate 
the magnetic field on a 1OOx 100 grid on the surface S :  3.5 d (x,y) d 3.6 and 
z = 0. We label the N = 100 x 100 = lo4 grid points with an index i (1 d i d N )  
according to the prescription that the component of the magnetic field normal to S at 
the grid point i, denoted by B,,(, satisfies IBJ 3 IB,,i+ll. (That is, we arrange the Bz,i 
in size order). We then estimate @’ = s, IB,I d2x via 

N 

CF = c R , t I  A / X  
I-1 

where A is the area of S. Now, starting with the grid point with the largest value of lBz, J 
(i.e. the smallest i), we successively mark positions on the grid until the plotted points 
account for 90 % of a’. That is, we mark the grid point with indices 1 6 i 6 No, where 
No is the smallest integer satisfying 

3 P,, ( I  A / N  3 0.90 C P,, ( I  A/N.  

The points in figure 8 with positive B, and with negative B, are plotted as plus and 
minus signs, respectively. Figures 8(a)-8(d) refer to four successive times, y1 = 4, 5, 6 
and 7. We clearly see from these figures that finer scale structure is generated with 
increasing time. Referring to figure 8(d)  we also see that the magnetic field variation 
is apparently predominantly in the direction perpendicular to long thin bands in the 
figure. Along the direction of these bands the magnetic field is comparatively weakly 
varying. The observation that on a two-dimensional cross-section the magnetic field is 
weakly varying along curves indicates that the magnetic field is weakly varying on two- 
dimensional surfaces in the whole three-dimensional dynamo region. Thus we have 
verified that the generated magnetic field structure is sheet-like. 

We now calculate the flux growth rate by a direct computation of the flux. Since the 
magnetic field is sheet-like, a line segment, instead of an area, will be sufficient. The 

N 

I-1 t=1 
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FIGURE 9. (a) In I@J versus n. The superposed straight line in (a) is a line of slope determined from 
(c). (b) Inf(e) versus ln(l/e) calculated at n = 14. The straight line shown is the fit to the data. (c) In 
(L ,L; )  versus n for N ,  = los. 

chosen line segment has y- and z-coordinates y = z = 1 and has a length of 2.n parallel 
to the x-axis. We calculate B, at N p  = lo’ evenly spaced points on the line segment to 
approximate the flux @ as X 2.nBz/Np. (We have also done computations with another 
line segment which gives a similar result.) Figure 9(a) shows plots of In l@l versus n for 
two different grids (the dashed line and the dash-dot line). In the range n S 13 the two 
results agree, showing that the data are reliable in this range. For n 2 13 the results 
using the two grids begin to diverge, indicating loss of sufficient resolution in the 
calculation. 

Next, we calculate the cancellation exponent K.  We use the same line segment as in 
the previous paragraph and calculate the magnetic field on N p  evenly spaced points for 
time n = 14. We then calculate f ( e )  and graph the plot of lnf(c) versus ln(l/e) as 
shown in figure 9(b). The straight line is the linear fit to the data and its slope yields 
K = 0.40. 

Finally, we calculate the average (L ,L;)  as a function of time using the method 
described at the end of $3. Figure 9(c) show a plot of In (L,L;) versus n, where the 
average is take on N, = lo6 initial points. The data are almost perfectly fitted by a 

10-2 
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straight line, whose slope yields a growth rate of 0.48. We then fit the data in figure 9(u) 
up to n - 13 with a straight line of slope 0.48. The fit is shown as the solid line in figure 
9(a). It can be seen that the line fits the data reasonably well. 

6. Conclusion 
This paper has developed a simple formula, (24), for the dissipationless limit (i.e. 

R, + a) of the growth rate of the fast kinematic dynamo instability. The growth rate 
is given in terms of the cancellation exponent and the infinite-time limit of an average 
of finite-time Lyapunov numbers of the chaotic flow. The quantities in the growth rate 
formula can all be obtained solely from consideration of the dissipationless dynamics. 
Thus we establish a connection between the ergodic stretching properties of the 
underlying chaotic flow and the instability growth (see also Aurell & Gilbert 1992; 
Finn & Ott 1990). Since the result is based on heuristic considerations, it has been 
checked against an analytically soluble example and numerical experiments, with good 
results. The numerical experiments also show that numerical calculations based on the 
growth rate formula are very feasible and converge well. 

We thank John M. Finn for many discussions and useful comments. We also thank 
Jane Wang for pointing out some numerical mistakes in $6.  This work was supported 
by the Office of Naval Research (Physics). 

Appendix A. The case K > 1 
In the main body of this paper, we have discussed cases where K < 1. When K > 1, 

(24) implies that there is no exponential growth (and thus no dynamo action) for sheet- 
like magnetic field structure. However, in numerical calculations care must be taken 
when this is the case. In particular, our definition of K given in $2 makes sense for 
K < 1, but has to be modified to define K so that the more singular case of K > 1 makes 
sense. 

From discussions in $2, we have 

F l l i B ( x , t ) d x (  - l/eK for E > E * .  

Here i denotes one of the €-length intervals. Since the total number of €-length intervals 
is of order (l/c), the average of I j tB(x,  t) dxl is given by 

Numerically, we calculate the magnetic field at a large number of evenly spaced points, 
and the integral in (A 1) is estimated as 

where A is the separation between two neighbouring points, x p  denotes the coordinates 
of one of the evenly spaced points, and I, denotes the ith interval. For K > 1, (A 1) then 
implies that the average of I j, B(x, t )  dxl (or IXXpEI t  B(xp, t)l) increases with decreasing 



Fast kinematic dynamo instabilities of chaotic fluid$ows 285 

I 1 I I I 

5 6 7 
In (l/e) 

FIGURE 10. lnj(c) versus ln(l/e). The cutoff occurs near ln(l/e) = 6.0 owing to our finite number 
of applications of the map (n  = 12). 

E (even though the number of contributing points decreases) provided that 6 > E*. 

Hence, for a single point xp in Zt, we typically expect to find that 

The estimate of I siB(x, t)dxl via (A 2) thus can depend strongly on whether a single 
bordering point is included in Zi or not. That is, the inclusion or exclusion of a single 
boundary point in the grid can make a large change in 1 si Bdx(. Thus, for K > 1, 
computation of K in this way does not make sense. 

To remedy this, we introduce the following improved definition of K .  We first smooth 
the magnetic field over a range 6 > e*, 

IW,, t>l 2 I J, m ,  0 dxl. 

I 
B(x, t, e) = B(x’, t )  x ~ e - l x - x ’ ~ z i ( z a e )  dx‘. J (27G)E E 

(The result for K is independent of the precise form of the smoothing (Gaussian for 
(A 3)).) Then we calculate X ( E )  via 

The cancellation exponent K is then given by 

Noting that X(E) in (A 4) is essentially the left-hand side of (12) and that (A 5) implies 
the scaling on the right-hand side of (12) with e* replaced by 6, we see that our new 
definition for K is consistent with the previous one. We have numerically verified for 
several examples that, as expected, this definition give the same result as the definition 
in $2 when K < 1. 

As an illustration we now use the model in $4 to test the modified definition of the 
cancellation exponent in the case K > 1. We choose a = 0.45, /3 = 0.55 and 8 = 2.8. 
From (46b), we obtain a theoretical prediction of K = 2.58. In figure 10 we show our 
numerical plot of lnX(6) versus ln(l/e), in which each diamond represents one data 
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X 

FIGURE 11. Dependence on the shear parameter a of (a) the growth rate y(a), (b)  the cancellation 
~ ( a ) ,  and (c) the prediction of ~ ( a )  from (B 3). This computation used N = 1024 cell. The jagged 
structure at small a is due to the discretization; the kinks at larger values of a correspond to mode 
crossings. 

point and the solid line is the linear fit to the data. The slope of the linear fit yields an 
estimated value of K = 2.36, which is in reasonable agreement with the result of (46b). 
Numerical application of the definition in $2, on the other hand, yields K = 1 in all 
cases where the theory predicts K > 1. 

Appendix B. Cancellation exponents of the stretch-fold-shear dynamo 
By B. J. Baylyl and A .  Rado’ 

Mathematics Department, University of Arizona, Tucson, AZ 85721, USA 
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA 

The stretch-fold-shear dynamo introduced by Bayly & Childress (1988) is a simple 
model akin to the Finn-Ott generalized baker’s dynamos (Finn & Ott 1988) and the 
stretch-fold-slide model analyzed by Du and Ott in the foregoing paper. Because the 
shear is smoothly varying, the Bayly-Childress model cannot be solved exactly except 
in special cases. It is still easy to treat numerically, and represents an intermediate case 
between analytically solvable models and the extremely complex dynamos seen in 
chaotic three-dimensional flows. Stretch-fold-shear models have the nice feature that 
the shear parameter can be varied continuously. When Du and Ott first presented the 
idea of the cancellation exponent (Du & Ott 1993), we decided to find out how the 
cancellation exponent depends on the shear parameter, and see whether there was any 
connection between the cancellation exponent and the growth rate. 

The stretch-fold-shear dynamo (Bayly & Childress 1988) is described by the 
operator G :  
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A 

FIGURE 12. Calculation of cancellation exponents. Curve (a) (solid line) is a plot of log,x(E) as a 
function of logz(l/e) for B = 2-P, p = 0, 1, ..., 10. Curve (b) (dotted line) is the straight-line fit to the 
datapoints for p = 3,4, ..., 10. 

Here b(y) is any complex scalar function defined on 0 < y < 1, and a is the shear 
parameter. We discretize (B 1) by dividing the interval (0,l)  into N = 2p  equal 
subintervals and approximating b(y )  by a constant value in each subinterval. This 
yields a finite-dimensional matrix approximation to the operator G. The eigenvalue 
A(a) of largest modulus and the corresponding eigenvector 6 = (bl, b,, . . . , bN) can 
easily be found. The growth rate of the stretch-fold-shear dynamo is 

Y(4 = log(Ih(a)l). (B 2) 
Curve (a)  in figure 11 shows the growth rate as a function of a. 

The cancellation exponent ~ ( a )  is computed using the dominant eigenvector 6 as the 
‘density’ of the signed measure. Using e = 2-” for p = 0 to P yields graphs like figure 
12 for log, x(c) versus log, (l/e). The graphs we obtained are all fitted extremely well 
by straight lines, showing the existence of a robust cancellation exponent. Curve (b) in 
figure 11 shows the cancellation exponent K as a function of a. It is plausible that a 
simple linear relation exists between the cancellation exponent and the growth rate. Du 
& Ott’s theory predicts 

Curve (c )  in figure 11 shows this prediction, and the agreement with the direct 
computation is excellent. 

K ( a )  = 1 - y(a)/log (2). (B 3) 
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